Exercice 1 (10.1.1)

Une solution aqueuse contient 28% masse d'éthanol, C_2H_5OH , et sa masse volumique est de 0,96 g cm⁻³. Calculer :

- a) les fractions molaires d'alcool et d'eau de cette solution
- b) sa molarité
- c) sa molalité

Exercice 2 (10.2.12)

On considère 500 mL d'une solution aqueuse saturée en sulfate de calcium, CaSO₄.

- a) Quelle masse de Ca²⁺ dissout cette solution contient-elle ?
- b) Quelle masse sulfate de sodium, Na_2SO_4 doit-on ajouter à 500 mL de la solution pour diminuer la concentration de Ca^{2+} à $2.0 \cdot 10^{-4}$ mol L^{-1} ?

Donnée : K_s (CaSO₄) = 4,5·10⁻⁵ ; Na₂SO₄ est totalement dissout dans ces conditions

Exercice 3 (10.2.15)

La solubilité de l'hydroxyde de zinc, Zn(OH)2, varie selon la composition du milieu. Calculer sa solubilité dans :

- a) l'eau pure
- b) une solution de KCl 0.1mol L^{-1}
- c) une solution de NaOH 0.1mol L^{-1}
- d) une solution de ZnCl₂ 0.1mol L⁻¹

Donnée : $K_s (Zn(OH)_2) = 4,5 \cdot 10^{-17}$

Exercice 4

La solubilité de l'azote dans le sang à 37°C et à pression atmosphérique ($P_{tot} = 1$ atm) vaut 5.6 x 10^{-4} mol L^{-1} . Sous l'eau, un plongeur respire un mélange de gaz avec une pression partielle de N_2 égale à 4 atm. Calculer le volume de N_2 qui passe du sang aux voies respiratoires du plongeur une fois remonté à la surface. Considérer que la pression partielle de N_2 de à la surface de l'eau vaut 0.8 atm et que l'azote est dissout dans 5 L de sang.

Exercice 5.

Calculer la pression de vapeur saturante d'une solution idéale de 20 g de méthanol (CH₃OH) et de 100 g d'éthanol (CH₃-CH₂-OH). La pression de vapeur saturante du méthanol pur vaut 125 mbar et celle de l'éthanol pur 58 mbar à 20°C. Quelle est la composition de la vapeur à 20°C?

Exercice 6

Soit une solution diluée idéale composée de deux liquides miscibles A et B à une certaine température T dans un récipient fermé. La pression de vapeur des liquides A et B purs vaut respectivement $P^*_A = 0.67$ bar et $P^*_B = 1.2$ bar. Pour une fraction molaire de A, $x_A = 0.9$ dans la phase liquide, on mesure une pression totale de 0.7 bar à cette même température T.

- a) Calculer la composition de la vapeur en A et B.
- b) Calculer la pression totale de la vapeur lorsque la phase liquide contient 95% de A ($x_A = 0.95$).
- c) Indiquer si l'enthalpie du mélange est positive ou négative

Exercice 7

Soit un réservoir constitué de deux compartiments. Le premier compartiment, de 3 L, contient de l'hélium (He) et le second de 1.5 L contient de l'argon (Ar). A 25°C, la pression dans les deux compartiments est de 1 bar. Calculer l'énergie de Gibbs du mélange ($\Delta G_{\text{mélange}}$) ; $\Delta S_{\text{mélange}}$ et $\Delta H_{\text{mélange}}$ lorsqu'on ouvre la vanne de séparation entre les compartiments à cette même température. On suppose que les gaz sont parfaits et le mélange est non réactif.

Exercice 8

Soit un réservoir constitué de deux compartiments maintenus à 45°C. Le premier compartiment, de 2 L, contient 4 g d'hélium (He) et le second 4 g de dihydrogène (H₂). Les deux gaz sont initialement aux mêmes conditions de pression et de température.

- a) Calculer l'énergie de Gibbs ($\Delta G_{\text{mélange}}$) et l'entropie ($\Delta S_{\text{mélange}}$) du mélange après l'ouverture de la vanne de séparation. Supposer que les gaz sont parfaits et que le mélange est non réactif.
- b) Calculer la variation du potentiel chimique de l'hélium et du dihydrogène après le mélange.